Low - Rank Solution Methods for Large - Scale Linear Matrix Equations
نویسنده
چکیده
LOW-RANK SOLUTION METHODS FOR LARGE-SCALE LINEAR MATRIX EQUATIONS Stephen D. Shank DOCTOR OF PHILOSOPHY Temple University, May, 2014 Professor Daniel B. Szyld, Chair We consider low-rank solution methods for certain classes of large-scale linear matrix equations. Our aim is to adapt existing low-rank solution methods based on standard, extended and rational Krylov subspaces to solve equations which may viewed as extensions of the classical Lyapunov and Sylvester equations. The first class of matrix equations that we consider are constrained Sylvester equations, which essentially consist of Sylvester’s equation along with a constraint on the solution matrix. These therefore constitute a system of matrix equations. The second are generalized Lyapunov equations, which are Lyapunov equations with additional terms. Such equations arise as computational bottlenecks in model order reduction.
منابع مشابه
Truncated low-rank methods for solving general linear matrix equations
This work is concerned with the numerical solution of large-scale linear matrix equations A1XB T 1 + · · ·+ AKXB K = C. The most straightforward approach computes X ∈ Rm×n from the solution of an mn×mn linear system, typically limiting the feasible values of m,n to a few hundreds at most. Our new approach exploits the fact that X can often be well approximated by a low-rank matrix. It combines ...
متن کاملGreedy low-rank methods for solving general linear matrix equations‡
This work is concerned with the numerical solution of large-scale linear matrix equations A1XB T 1 + · · ·+ AKXB K = C. The most straightforward approach computes X ∈ Rm×n from the solution of an mn×mn linear system, typically limiting the feasible values of m,n to a few hundreds at most. Our new approach exploits the fact that X can often be well approximated by a low-rank matrix. It combines ...
متن کاملEfficient Solution of Algebraic Bernoulli Equations Using H -Matrix Arithmetic
The algebraic Bernoulli equation (ABE) has several applications in control and system theory, e.g., the stabilization of linear dynamical systems and model reduction of unstable systems arising from the discretization and linearization of parabolic partial differential equations (PDEs). As standard methods for the solution of ABEs are of limited use for large-scale systems, we investigate appro...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملSolving Large Sparse Lyapunov Equations on Parallel Computers (Research Note)
This paper describes the parallelization of the low-rank ADI iteration for the solution of large-scale, sparse Lyapunov equations. The only relevant operations involved in the method are matrix-vector products and the solution of linear systems. Experimental results on a cluster, using the SuperLU library, show the performance of this approach.
متن کامل